Mechanism of ATP-induced local and conducted vasomotor responses in isolated rat cerebral penetrating arterioles.

نویسندگان

  • Hans H Dietrich
  • Tetsuyoshi Horiuchi
  • Chuanxi Xiang
  • Kazuhiro Hongo
  • J Russell Falck
  • Ralph G Dacey
چکیده

BACKGROUND Adenosine triphosphate (ATP), a potent vascular regulator in the cerebral circulation, initiates conducted vasomotor responses which may be impaired after pathological insults. We analyzed the mechanism of ATP-induced local vasomotor responses and their effect on conducted vasomotor responses in rat cerebral penetrating arterioles. METHODS Arterioles were cannulated and their internal diameter monitored. Vasomotor responses to ATP were observed in the presence or absence of inhibitors, or after endothelial impairment. Smooth muscle membrane potentials were measured in some vessels. RESULTS Microapplication of ATP produced a biphasic response (constriction followed by dilation), which resulted in conducted dilation preceded by a membrane hyperpolarization. alpha,beta-methylene-ATP or pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) blunted the ATP-mediated constriction and enhanced local and conducted dilation. N(omega)-monomethyl-L-arginine, endothelial impairment and N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH) reduced the local dilation caused by ATP. The conducted dilation was attenuated by MS-PPOH and endothelial impairment, but not N(omega)-monomethyl-L-arginine or indomethacin. CONCLUSION ATP-induced conducted dilation is preceded by membrane hyperpolarization. Local ATP induces initial local constriction via smooth-muscle P(2X1) and subsequent dilation via endothelial P(2Y) receptors. Nitric oxide, cytochrome P450 metabolites, and intermediate and large conductance K(Ca) channels mediate dilation caused by ATP. ATP-induced conducted dilation is dependent upon both the endothelium and cytochrome P450 metabolites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of extracellular K+-induced local and conducted responses in cerebral penetrating arterioles.

BACKGROUND AND PURPOSE Extracellular concentration of potassium ion ([K+]o) may have a significant influence on the cerebral circulation in health and disease. Mechanisms of [K+]o-induced conducted vasomotor responses in cerebral arterioles, possibly linking microvascular regulation to neuronal activity, have not been examined. METHODS We analyzed vascular responses to small increases of [K+]...

متن کامل

Conducted dilatation to ATP and K + in rat skeletal muscle arterioles

AIM During exercise in humans, circulating levels of ATP and K+ increase at a time when blood flow increases to satisfy metabolic demand. Both molecules can activate arteriolar K+ channels to stimulate vasodilatation; here, it is established whether conducted dilatation is observed in a skeletal muscle bed. METHODS Isolated and cannulated rat cremaster arterioles were used to assess both loca...

متن کامل

Postischemic augmentation of conducted dilation in cerebral arterioles.

BACKGROUND AND PURPOSE Conducted vasomotor responses likely play an important role in cerebrovascular regulation, but it is unclear how these responses may be affected by ischemia. The purpose of this study was to evaluate the hypothesis that cerebral ischemia and reperfusion (I/R) alters vascular conduction in cerebral arterioles. METHODS Middle cerebral artery occlusion (MCAO) was induced b...

متن کامل

Analysis of purine- and pyrimidine-induced vascular responses in the isolated rat cerebral arteriole.

Effects of extraluminal UTP were studied and compared with vascular responses to ATP and its analogs in rat cerebral-penetrating arterioles. UTP, UDP, 2-methylthio-ATP, and alpha,beta-methylene-ATP dilated arterioles at the lowest concentration and constricted them at high concentrations. Low concentrations of ATP dilated the vessels; high concentrations caused a biphasic response, with transie...

متن کامل

Comparison of P2 receptor subtypes producing dilation in rat intracerebral arterioles.

BACKGROUND AND PURPOSE P2 receptors are important regulators of cerebrovascular tone. However, there is functional heterogeneity of P2Y receptors along the vascular tree, and the functionality of P2Y receptors in small arterioles has not been studied in detail. We investigated the effects of activating P2Y1 and P2Y2 receptors and their underlying dilator mechanisms in rat intracerebral arteriol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vascular research

دوره 46 3  شماره 

صفحات  -

تاریخ انتشار 2009